您好、欢迎来到现金彩票网!
当前位置:刘伯温预言 > 图像变换 >

基于小波变换和图像融合的智能照明控制系统研究

发布时间:2019-05-25 08:30 来源:未知 编辑:admin

  进入21 世纪以来,我国建筑进入了一个智能化高度发展的时代,新的智能大厦、现代化居民居住小区按照传统的照明控制方式已经不能满足其更高标准的要求。传统的照明方式简单、有效、直观,但它过多依赖控制者的个人能力,控制相对分散以及无法有效管理,并且其适时性和自动化程度太低。其后的自动照明控制模式虽然解决了传统方式控制相对分散和无法有效管理等问题,实现了照明控制的自动化,但却无法实现调光控制功能。

  目前,国外产品如尼科公司的智能照明控制系统能预设各种场景进行照明控制,广泛应用于办公大楼、宾馆酒店、体育场馆等场合,但是存在价格高、操作相对复杂,对管理人员要求较高等缺点。国内相关应用于居住小区及普遍公共场所的照明智能控制系统尚不多见。

  为解决传统红外+ 光感传感器方式的灯光照度控制系统存在要求较多的传感器,而且布置位置要求较高和工程施工、布线量大等缺点,本文提出采用动静监测( 红外、声控) + 数字图像信息融合的照度控制方式。通过将采集来的图像信息进行融合处理,对融合之后的图像进行灰度划分,将每一区域的灰度平均值与预设灰度值对比,从而调节场景照度。

  楼宇智能照明系统中动静监测与CCD 数字图像信息融合技术的控制系统框图如图1 所示。

  其基本原理是: 通过动静检测技术观察是否有人走动,如果没有人走动,关闭照明; 如果有人存在,对采集的多幅数字图像进行分析,将图像灰度平均值与各种预置的标准值进行对比,计算其环境照场的照度模型,如果在照明系统预设模式允许的误差范围内,就不需要对照度进行调整,反之,就对照度进行调整。

  图像融合是指将不同传感器获得的同一景物的图像或同一传感器在不同时刻获得的同一景物的图像,经过去噪、时间配准、空间配准和重采样后,再运用某种融合技术得到一幅合成图像的过程通过对多幅传感器图像的融合,可克服单一传感器图像在几何、光谱和空间分辨率等方面存在的局限性和差异性,提高图像的质量,从而有利于对物理现象和事件进行定位、识别和解释。其具体过程见图2。

  智能照明系统中,当动静监测发现有人走动时,CCD 摄像机会对相应区域进行图像信息采集。但在图像采集过程中,由于受到各种因素( 如传感器的位置速度、光照强度、随机噪声等) 的影响,实际获得的图像往往包含上述影响因素的特征。因此在实现图像融合之前,需要对传感器获得的不同图像进行预处理,包括图像校正、增强、平滑、滤波、配准等。

  如图3 所示,为CCD 摄影机采集的室内图像经过图像校正、滤波以及配准预处理之后的效果显示。

  从图3 中可以发现,由于光照强度,以及噪声和干扰等因素,图3 ( a) 中右边花盆有些模糊,图3 ( b) 中的门有些模糊,这样的图像所提供的信息不利于智能照明系统识别,由此可利用下面的小波融合技术将源图像信息进行融合。

  Mallat 在Burt 和Adelson 的塔形图像分解和重构算法的启发下,提出了小波变换的Mallat 快速算法,按照二维Mallat 算法,将每一副经过预处理的CCD图像进行二维分解。

  本文CCD 摄影机采集的图像大小为351 × 260,设分解层数为3,在尺度k-1 上按如下的Mallat 分解公式进行分解:

  分别表示预处理后的CCD图像在351 × 260 分辨率下的低频分量,水平高频分量,垂直高频分量和对角高频分量。其中低频分量反映了CCD 图像的近似和平均特征,集中了图像的大部分能量信息。如图4 所示,为CCD 图像的小波分解示意图。

  在两幅CCD 图像的小波变换域内,分别对水平,垂直与对角分量进行融合。在各尺度j ( j = 1,2,3)上将两幅CCD 图像的高频系数进行比较,把对应位置上绝对值较大的系数作为重要小波系数保留下来,即其中

  对两幅CCD 图像经小波变换之后的逼近系数C1J和C2J进行处理,由于在智能照明系统采集图像时,受各方面因素,使得CCD 摄影机采集的图像在局部出现模糊的现象,图像模糊表示其细节信息( 或高频信息) 丢失较多,相比之下,其整体信息( 或低频信息) 保持较好,因此两幅CCD 图像经小波分解后其逼近系数之间的差异要远小于小波系数之间的差异,故融合之后的逼近系数可由确定。

  利用以上得到的全部小波系数以及可以得到由智能照明系统采集的多幅CCD 中的逼近系数进行二维小波反变换,有重构式维小波反变换,有重构式图像融合图像。其融合过程如图5所示。

http://3dtvsource.com/tuxiangbianhuan/114.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有